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'tors aka Supercapacitors, double-layer
f:h. ‘electrochemical capacitors

ower than batteries, higher capacity than
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e*CapaCIty (A*s) = Q = Farad * Voltage = Ah *
== ‘ OG
— e Energy Capacity (W*s) =J = 1/2 * Farad * Voltage? =

.Kﬁ

~  Wh *3600
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e Agueous Electrolyte = 1 V; Organic Electrolyte = 2.5V
so for equivalent capacitance organic = 6 x energy
storage

e Current/voltage curve not matched well to batteries
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“Is Struct‘ural‘Ew |
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Buud elongated electrode cells

- Corrugate Into honeycomb core

- _Attach interconnects and bond
face sheets

U.S. Patent #5,567,544 &
5,793,603
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_ Energy or Power increases because
na rlals replace inert structural components:
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ESE (Wh/kg) Wh / (MFBP (kg) — replaced inert core (kg))
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,__ J.s;:. -‘Eﬁectwe battery volume goes to zero — effective energy
e —
e denS|ty and effective power density become infinite
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-~ e Structure must be incorporated into materials to obtain
net mass benefit
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« Expected improvements 20 - 30 %, primarily from
secondary mass
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| . "'-"'bf carbon fabrics, PAN & Pitch
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rporate activated carbon powders into
---.-r 1y saturated electrode

"4'- §=F rtrélly saturated activated carbon fabrics
= e Activate partially saturated carbon fabrics

~ « Dual fabric - partially saturated carbon fabric
(—90%0) with activated carbon fabric on surface
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- Variet / J 3 tlvated carbons evaluated
— High Ju ace area fabrics had higher capacitance
= [Lower urface area fabrics had better resistance
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— rch elf surface area fabrics more costly

S Partia ﬂy'saturated carbon fabrics optimized for strength
S -"__,,r d'resistance
-, A'qerus electrolytes chosen for low resistance
= ""‘=°-_j&/latr|x resins selected for high strength and
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- compatibility with electrolyte

- = Current collectors selected based on compatibility with
electrolyte

e Seals obtained with laminate packaging
e Compression provided external to cell
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Pliiecap Charge Capacities are
A% glesehaf Tl tge

=

..but energy
storage is closer
to 0.6 %0
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Voltage (V)
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Capacity (mAh)
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Pmax = Voc2/4R
5.68 W
11.3 A
310C
290 kW/kg
500 kwW/I
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0.1 0.2 0.3

Scanning with more external pressure improved the performance
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j@ ﬁr test data for batterles -
a es and OCV vs SOC

ecJ:__;'g data for Ultracapacitors - Fit
:a Ty to SOC vs rate with 2nd order
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gelynemials

— @Iutlons iteratively fit so both ultracaps and

— __,_f#batterles had same voltage
—  * All constant current discharges
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= = Could solve for either ultracaps, batteries or
together

® Time of discharge could be varied
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- Model used to evaluate combinations of structural
ultracapacitors and structural batteries
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e Thermal model created
to evaluate specific
application

Sub Module Temperatures and Heater Power For Heater/MLI Arrangments

e General information
obtained - more detailed
scenario and model
required

e Heaters and insulation
required

e High power operation
Is also limited
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@ Beta 90 CD Beta O

Both assume discharge at 5 C rate in sun (hot case)
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C-rate eater ) Heater W) Heater (W)
1 1.64 (0.05) 0.86 (0.025) 0.52 (0.015)

5 0.7

10 0.08

- Beta90 1 2.54

: 5 1.97
== 10 0.3
e MLI emissivity in ()

-

==

- o al— -:,'.-_
= -

e
T |

- 9
e cater requwements (per 10 Ah cell) are <10% of energy capacity

e i
"f;—:":- Specific heater power for cells have greater variance and might

-~ require active cell balancing

e Thermal management solutions will likely require design for actual
discharge rates and MLI will be used depending on spacecraft
orientation
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tecapacitors developed using activated and non-
bon fabrics

Viodelir demonstrates significant impact of
———ult aeapamtor/battery hybrid even without electronic
-man_ag’ement
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- Thermal management will require creative solutions specific for
different applications - but appear feasible
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