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Introduction
• Future missions of the National Aeronautics and Space 

Administration (NASA) require advanced energy storage 
systems
– High specific energies (Wh/kg)
– High energy densities (Wh/l)

• Develop advanced lithium ion cells
• Anode development is a key component
• the anode represents 24% of cell mass and additional 

opportunity for cell mass reduction
• Key performance parameters

– Threshold value of 600 mAh/g
– Goal of 1000 mAh/g

cathode
anode
electrolyte
separator
aluminum foil
copper foil

Estimates for component 
weight fraction in 30 Ah cell
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Anode Materials
• Graphite 

– Excellent cycling characteristics
– Theoretical capacity of 372 mAh/g

• Silicon
– Theoretical capacity of 4200 

mAh/g
– Expands 400% upon lithiation
– High irreversible capacity loss
– High fade rate
– Poor coulombic efficiency

• Silicon carbon composites
– Carbon matrix absorbs expansion 

of the silicon and maintains 
electrical contact

– Carbon matrix prevents direct 
electrolyte contact
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In-House Anode Synthesis
• Silicon containing carbon gel microbeads
• Carbon fiber paper supported silicon containing 

carbon nanofoam
• Based on resorcinol-formaldehyde gel precursors 

containing nano-silicon
• Porous carbon matrix will absorb the expansion of 

the silicon and prevent direct silicon-electrolyte 
contact

• Makes use of traditional cost –effective laboratory 
techniques
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10 um

Carbon-Silicon Microbeads Carbon Nanofoam with Nano-
Silicon Supported on Carbon 
Paper

Carbon Cryogel Anode Materials

Originally investigated by Hasegawa, 
Mukkai, Shiratu and  Tamon Carbon
42, 2004 pp. 2573-2579

Carbon nanofoams are currently 
under investigation by J. Long at NRL 
for use in electrochemical capaciters 
and as electrode support materials
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cathode
anode
electrolyte
separator
aluminum foil
copper foil

Estimates for Component 
Weight Fraction in 30 Ah 

Cell
Anode copper current collector represents a 
significant weight fraction ( 8%)

Carbon-Silicon Microbeads
Mix microbeads 
with binder and 
cast onto copper 
foil current 
collector

Carbon Nanofoam with Nano-
Silicon Supported on Carbon Paper

• Advantage : Uses conventional manufacturing 
techniques

• Disadvantage : Requires heavy copper current 
collector 

• Advantage : “Stand Alone” electrode that does not 
require the use of a current collector (Lighter)

• Disadvantage :  Would require development of new 
electrode and cell manufacturing techniques
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Copper Foil  2g
•Not electrochemically 
active towards lithium

Carbon Paper  0.2 g
•Electrochemically active towards 
Li (250 mAh/g)

Copper Vs. Carbon

Electrode mAh/g 
Active 

Material

mAh/g
Electrode

Nanofoam 500 500

Graphite 
With Cu

350 170

Si With Cu 1000 312

Theoretical Specific Capacities at the 
Active Material and Electrode Levels
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Carbon Microbead Testing

• Carbon microbeads were slurried with NaCMC 
• 0.005” film cast onto copper foil
• Anodes placed in coin cells using lithium as the 

counter electrode
• Electrolyte: 1M LiPF6 1:1:1 ethylene carbonate, 

diethyl carbonate and dimethyl carbonate
• Cells formed at C/10 and cycled from 10mV to 1.5 V
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Electrochemical Cycling of Carbon Microbeads
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As Cast Nano- Silicon Carbon Gel Microbead Electrode  

Cast Nano- Silicon Carbon Gel Microbead Electrode  After Cycling 

Carbon-Silicon Microbead Electrodes
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Carbon Nanofoam Half Cells

• Pouch cells
• Nanofoam material placed on copper foil current 

collectors
• Nickel tab spot-welded instead of the copper foil
• Lithium counter electrode
• First formation at approximately C/5
• Second formation at C/20
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Electrochemical Cycling of Carbon Nanofoam Electrodes
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Si-Carbon Microbeads Cell 1 
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Formation of Lithium Ion Diffusion Pathways

Silicon

Carbon

Li+ Ions

Li+ Ion Diffusion Pathways

Pre-Formation

Full  Intercalation of  Li+
Ions Into Carbon Matrix 

and Si

Establishment of 
Diffusion Pathways 
into Carbon Matrix

Intercalation  of Li+
Ions Into Carbon 

Matrix and Surface Si

Establishment of 
Diffusion Pathways 

Through Carbon 
Matrix to Si
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Initial Results
• Microbeads

– 425 mAh/g
– Short of threshold value of 600 mAh/g and goal of 1000 mAh/g

• Nanofoam
– Initial results showed 400 mAh/g at the electrode level
– “Stand Alone” anode 100% active material
– Determined to have a higher potential to meet or exceed goals
– Decided to focus on development of the carbon nanofoam 

anodes

Electrode mAh/g 
Active Material

mAh/g
Electrode

Nanofoam 500 500
Graphite 
With Cu

350 170

Si With Cu 1000 312

Theoretical Specific Capacities at the Active 
Material and Electrode Levels
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New Experiments

• Improve the performance of the Si-carbon nanofoams 
by addition of conductive additives or binders
– Addition of graphite to resorcinol formaldehyde gel
– Coat with polyaniline doped with LiPF6

• New formation procedure 
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New Formation Procedure 

• Very slow initial formation to 10 mV
• Replace taper charge with very low constant current 

to 10mV
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Silicon-Carbon Nanofoams
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Carbon-Silicon Nanofoam Electrodes

Carbon-Silicon-Graphite Nanofoam Carbon-Silicon Nanofoam
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Polyaniline Coated Carbon-Silicon Nanofoam

Carbon-Silicon-Graphite Nanofoam Carbon-Silicon Nanofoam
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Nyquist Plot For Si-Carbon Nanofoam Anodes

• The nanofaom containing graphite has a lower impedance than the 
nanofoam which does not contain graphite 

• Samples coated with polyaniline/LiPF6  show drastically lower 
impedances than those without the coating

• The presence of graphite in combination with the polyaniline coating  
resulted in a higher impedance than that of a coated sample not 
containing graphite
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Conclusions
• A “Stand Alone” anode has been synthesized with  specific 

capacities that meet and/or exceed the ETDP threshold value 
of 600 mAh/g and would likely compare favorably, with regard 
to specific capacity, at the electrode level to conventional 
coated anode materials 

• “Stand Alone” carbon-silicon nanofoam anodes have the 
greater potential to address NASA goals

• “Stand Alone” carbon-silicon nanofoam anodes have the 
potential to significantly increase the specific energies (Wh/kg) 
for lithium-ion cells

• Addition of  graphite to the silicon containing carbon nanofoam 
dramatically increases capacity

• Use of the conductive binder polyaniline doped with LiPF6
dramatically increases capacity

• Very slow formation cycle is required to fully lithiate silicon
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Future Work

• Investigate the use of various conductive additives
–Graphites
–Carbon Nanotubes

• Investigate different binders or coatings
• Investigate different gel formulations
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