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Concern

• T30, the Teflon emulsion used in the manufacture of hydrogen 
electrodes used in nickel-hydrogen cells, will soon no longer be 
available
– PFOA (perfluorooctanoic acid) and Triton X-100 surfactant is being 

phased out in North America and Europe due to environmental 
concerns

– T30, an aqueous solution of Teflon containing both of these 
compounds, was removed from the commercial market in 2007

– Teflon emulsions have a short shelf life due to Teflon particle settling 
and coagulation
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Approach

• Establish a better understanding of the links between the properties 
of the Teflon emulsion, hydrogen electrode and cell performance
– Materials characterization
– Electrode characterization
– Cell performance

• Put in place tools and methods of evaluation for more quickly 
evaluating candidate replacement emulsions when T30 is no longer
available
– TE3859, now in-use commercially as a replacement for T30, is 

expected to be removed from production by 2013 due to further 
restrictions on the use of PFOA during manufacturing
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Historical Development of the Hydrogen Electrode

• Hydrogen electrodes composed of Teflon were developed for 
alkaline fuel cells in the 1960s

• When nickel-hydrogen cells were proposed as an alternative to 
nickel-cadmium cells for satellites, the same hydrogen electrode 
was tested and implemented

• Hydrogen electrode composition
– Nickel screen current collector
– GoreTex membrane on backside to retard water loss
– Pt/Teflon active material to reversibly catalyze the conversion of water 

to hydroxide and hydrogen
• Hydrogen electrode processing parameters were optimized to 

provide the best performance in fuel cells
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Operation of the Hydrogen Electrode

• Charge
H2O + e- → ½ H2 + (OH) –

• Overcharge
2H2O + 2e- → 2(OH) - + H2

• Discharge
½ H2 + (OH) - → H2O + e-

• Reversal (positive precharge)
2(OH) - → ½ O2 + H2O + 2e-

• Reversal (negative precharge)
½ H2 + (OH) - → e- + H2O 

SEM of the cross-section of a 
hydrogen electrode

Gortex
backer

Nickel 
Screen

Teflon/Pt black 
slurry
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Reported Failure Modes Associated with Hydrogen Electrodes

• Alkaline Fuel Cell Applications
– Excessive hydrophilic nature – flooding
– Excessive hydrophobic nature – insufficient wetting
– Flooding due to water vapor accumulation

• More commonly a concern at higher temperatures 
– Recrystallization of Pt particles over life

• Lowers reactivity and catalyst surface area
– Oxidation and dissolution of platinum 
– Carbon dioxide poisoning - usually from impure reactant gases 
– Silicate build-up from asbestos wicks

• Battery Applications
– Shorting due to Pt particle dislocation
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Structure of the Hydrogen Electrode

• Materials Parameters of 
Interest

– Conductivity
– Surface Area
– Pore size distribution
– Density
– KOH retention
– Gas permeability
– Cracking
– Adhesion of the active 

material
– Phase distribution of Pt 

and Teflon

SEM Image of the top surface of a 
hydrogen electrode
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Processing Variables of Interest

• Mechanism for creating pores and 
surface area considered important 
for electrode performance…

– Impact of the surfactant type
– Impact of sintering temperature
– Impact of other processing 

variables such as cooling rates, 
pressure levels, slurry 
composition

• ….however, how much change 
can be accommodated without 
affecting performance or life is not 
known

SEM Image of the top surface of a 
hydrogen electrode with residue left in 

surface crater
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Comparison of T30 with TE3859 Replacement Emulsions

• Analysis of Trace Components
– FTIR analysis confirmed thatT-

30 contained volatiles 
consisting of phenol 
ethoxylates; octyl, nonyl and 
decyl phenol ethoxylates

– FTIR analysis confirmed that 
TE3859 contained 
polyethylene glycol 
monomethyl ether

• Different volatility of new 
surfactants on likely to affect 
final surface area and pore size 
distribution for the same 
sintering temperatures

• Effect of different class of 
surfactants on electrode life is 
unknown

– Ability to wash residues from 
electrodes also unknown

FT-IR spectra of the T-30 and TE-3859 
residues of the centrifuged supernatant 

heated to 120oC
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Plate Characterization for T30 and TE3958 Electrodes

• In 2006, Aerospace sampled 24 electrode plates, 50% produced 
with T30 and 50% produced with TE3859.  

• Tests included:
– Density, thickness
– Adhesion, surface appearance
– KOH wettability, gas permeability, bubble pressure 
– Pt solubility, hot KOH exposure
– Inorganic and organic contaminants
– SEM analysis for pore, Pt particle, Teflon distribution, and cracking 

characteristics
– Oxygen and hydrogen overpotential measurements
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Results of Plate Characterization for T30 and TE3958

• TE3859 electrodes were thinner and more dense, less wettable with 
KOH and had smoother surface
– 20 – 50% less KOH held within pores
– Less internal pore and void volume
– Loss of much of the larger pores compared to T30 electrodes
– Loss of much of the macroscopic cracking compared to T30 electrodes
– Slightly more organic contaminates

• Slightly poorer Pt catalyst adhesion in TE3859 electrodes
– Adhesion degraded slightly more by hot KOH exposure

• Small changes in averaged charge and discharge voltages
– Higher H2 evolution (recharge) voltage for TE-3859 (about 10mV at C/2)
– Similar H2 recombination (discharge) voltages
– Lower O2 recombination potential for TE-3859 (about 20mV at C/2)
– Higher O2 evolution potential for TE-3859 (about 10mV at C/2)
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Impact of Normal Processing Variables

• Difficult to interpret electrode test results because the normal
variation of these parameters for T30 were unknown
– Aerospace then studied 10 samples each of T30 and TE3859 

electrodes where the post-sintering cool-down was varied between the 
allowable minimum and maximum rates

• Tests performed included:
– Density, thickness, adhesion to substrate, surface appearance
– KOH wettability and gas permeability

• Results found:
– Cooling rate affected electrode density and active material adhesion
– Range found overlapped the range seen in the prior T30 & TE3859 

tests
– Gas permeability affected by degree of compression of the Gortex layer
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Cell Testing with T30 and TE3859

• Four 90Ah cells received from EP for evaluation
– RNH90, double zircar separator, wall wick, 31% KOH, and strain gages
– Two made with T30 (cells 1, 4) and two with TE3859 (cells 2 & 3)

• Capacity measured at -10, 0, 10oC
– Charge at C/10 (9A) for 16 hours followed by a C/2 (45A) discharge to 1.0V

• Voltages were slightly higher in TE3859 cells during charge and discharge

T30 (Cell 1) T30 (Cell 4) TE3859 (Cell 2) TE3859 (Cell 3)

Capacity (Ah)
-10oC

0oC
10oC

104.2
106.8
98.3

105.5
107.0
97.9

105.4
107.3
98.4

104.8
107.5
98.4

EOC Voltage
-10oC

0oC
10oC

1.604
1.561
1.519

1.603
1.560
1.519

1.606
1.561
1.520

1.605
1.562
1.520
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Initial Capacity Cycling of Four Cells at -10oC: Voltage

OCV
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Initial Capacity Cycling of Four Cells at -10oC:  Pressure
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Cell-Level Testing of Cells made with T30 and TE3859

• Problem:  How to test NiH2 cells to best compare the capability of 
the different hydrogen electrodes?
– The nickel electrode is usually the life-limiting electrode when cycling 

NiH2 cells

• Typically, life tests and stress tests defined for NiH2 cells are 
designed to stress the nickel electrode
– Higher depth of discharge
– Increased temperature
– Increased amount or rate of overcharge
– Increased frequency of cycles (throughput)

• Stress factors appropriate to the H2 electrode were proposed 
– Increased rates for charge and discharge
– Reduced temperatures to evaluate liquid and gas transport processes
– Overcharge to evaluate O2 recombination tolerance
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Hydrogen Electrode Stress Test Cycle

• Low temperature operation:  -10ºC  at end of charge
– Enables operation with minimal overcharge to stress the nickel electrodes
– Worst case for transport processes
– Relatively abrupt onset for oxygen evolution at full charge

• 90-minute cycle profile
– 30 minutes discharge, 60 minutes recharge

• 40% DOD with periodic high rate discharge pulses
– Three cycles of 8 minutes discharge at 0.5C followed by 2 minutes at 2C 

for a 40 DOD
– High rate pulses expected to stress the H2 electrode transport capabilities
– Pulse periodicity expected to allow H2 pressure dependence to be studied

• High peak recharge rate (C-rate)
– Current taper at a peak cell charge voltage limit
– One set of cells run at 1.02 RCF, other set at a 1.04 RCF target (1.03 –

1.05 actual)
• Lower RCF cells go to open circuit conditions while the second set of 

cells obtain their higher RCF during the 60 minute charge 
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P/F Criteria and Parameters Trended

• Tests will run until cell voltage falls below 0.7 V during 2C discharge 
or 1.0 V at 0.5C
– To date, over 1880 cycles had been applied

• Parameters trended for possible sensitivity to the type of emulsion 
used in the hydrogen electrodes
– Voltages signatures during charge and discharge
– EOCV and EODV
– Current taper
– Recharge ratios (RCF)
– Thermal signatures
– Pressure signatures 
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Stress Test Results to Date:  End of Discharge Voltage
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Stress Test Results to Date:  Current Taper (cells 3 & 4)

Chiller anomaly
Power Outage
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Stress Test Results to Date:  End of Charge Voltage
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Stress Test Results to Date:  Max Charge Voltage prior to Taper
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Stress Test Results to Date:  Recharge Fraction (RCF)
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Stress Test Results to Date:  End of Charge Temperature
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Stress Test Results to Date:  End of Discharge Temperature
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Stress Test Results to Date:  End of Charge Pressure
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Stress Test Results to Date:  End of Discharge Pressure
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Summary of Findings to Date

• Differences in surfactants used in electrodes expected to impact
microstructure of electrodes produced due to differences in volatility, 
however, processing variables may have as strong of an impact
– Expect to need to vary some processing parameters for follow-on 

replacement emulsion for T30
– Need to develop the allowable range for critical parameters based on 

existing T30 production lots
• Different Teflon emulsions expected to show small impacts in 

charge and discharge voltages
• Low temperature, high pulse cycling of cells containing T30 

electrodes and other cells containing TE3859 electrodes are 
presently showing greater end-of-discharge voltage losses in the 
cells containing the T30 electrodes
– About 1850 cycles applied so far
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Next Directions

• Continue four-cell low temperature cycling tests
• Continue baseline effort for existing T30 electrodes
• Study variation of processing parameter on hydrogen electrode 

material characteristics
– Surface area, porosity
– Hydrophobicity
– KOH retention

• Study variation of processing parameter on hydrogen electrode 
material characteristics
– Plate-level stress tests

• Evaluate candidate replacement emulsions when they become 
available
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Additional Data
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Initial Capacity Cycling of Four Cells at 0oC
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Initial Capacity Cycling of Four Cells at 10oC
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Cycle 100 Curves for 1.02 RCF
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Cycle 1000 Curves for 1.02 RCF
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Cycle 1886 Curves for 1.02 RCF



37electronics_photonics@aero.org
©2007, The Aerospace Corporation, All Rights Reserved

Cycle 100 Curves for 1.03 – 1.05 RCF
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Cycle 1000 Curves for 1.03 – 1.05 RCF
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Cycle 1868 Curves for 1.03 – 1.05 RCF
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