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Energy Density of Battery Chemistries
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Why Silicon Anodes?

| « C, and C., are theoretical specific

Total cell (mAhg™) = 1S e T (1 0w) capacities of anode and cathode.
CACcOm » 1/Q, is the specific mass of all other
"~ CAQm + CcQwm + CaCc components; depends on battery
design
(Appleby et al. JPS 2007)
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Ca (graphite) = 372 mAh/g £ | T reeesssssssorssasssescesemserostel.
C, (silicon) = 3750 mAh/g S Tl oe®
C¢ (LiCoO,) = 135 mAh/g 8 40 8
Cc (LiMnO2, LiFePO4, etc) ~ 160 — 200 S
mAh/g ‘g' ” C_ 140 m Ah/
Cc (V and Cr oxides) ~ 300 — 500 mAh/g 3 | o clommany |
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» Opportunity to develop higher charge capacity anodes based on Si to
realize substantial reduction in battery weight.



Energy Density Increase of Consumer Electronic
Li-ion Batteries
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Challenges in Employing Silicon Anodes

Journal of Electrochemical Society, 1981

All-Solid Lithium Electrodes with Mixed-Conductor Matrix

B. A. Boukamp,* G. C. Lesh, and R. A, Huggins*
Department of Materials Science and Engineering, Stanford University, Stanford California 94305

Table I1. Crystal structure, unit cell volume, formula units per unit
cell, crystal volume per Si atom, and theoretical density for the

Li-Si system
Unit Vol.
cell Formula ume Theo-
Compound vol- units per Si-  retical £
and crystal ume  per unit atom density A ot wo et 2
structure (A3) cell (A3) (g/em?®)  Ref. W i
g&lb' 180.2
ie 8 20.0 233
LiisSiz, (LivnSt)
Orthorhombic 2436 6 58.0 115 (15)
LiySie, (Liz.8sS1)
Rhombohedral 308.9 1 51.% 1.43 (16)
L1sSi, (Lis.=Si)
Orthorhombic 538.4 2 67.3 1.38 (17)
LizSis, (LiaeSIi)
Cubic 6592 16 824 1.18 (11,18)

Maranchi et al.
Electrochemical and solid
state letters, 2003.



Some strategies to develop silicon based anodes

« Composites (eg. Silicon/graphite) e o N

» Silicon particles in a binder (CMC) W— Snp . 18

* Reduce particle size to prevent cracking during T Ty A
expansion

Nano-Silicon particles

Carbon matrix

— Approach 1: Embed smaller particles in an
inactive matrix (e.g., Sony “Nexelion” battery) s

— Approach 2: Form micro/nano structures

(@)
Binder

Lithiation ‘?é

0.2 pm

ESL. 7. Ad44 (2004)
Source: Sanyo




Thin film stress and wafer curvature
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Wafer Curvature Measurement

MOS — Multi-beam Optical Sensor; Measurement sensitivity: R ~

10,000 m

CE&RE

Silicon substrate

Cufilm — gj film: sputter
(250 nm)  4eposited (250
nm)



Experimental Setup

Laser source
CCD camera
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Laser beam array

P
Spatial filter
Etalon
] Polymer
Window separator
Cell
Electrolyte l Cu film
WE
Siwafer
CE&RE Li foil

MQOS setup integrated with the glove box



In situ measurement of stress in silicon anodes during electrochemical
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* Area under V vs. t plot: Electrical work
» Area under stress vs. time plot: mechanical dissipation due to plasticity
» Energy dissipation due to “plasticity” — affects energy recovery efficiency



Energy dissipation during lithiation and de-lithiation

Energy balance during lithiation

[ [ [
W, =W, +W, +W,

00000

w!=1 [Vdr W' =2y [o,dé

Energy balance during

delithiation W+ Wd N Wd
Wp =W,

mechanical dissipation
During lithiation ~ 0.65 J (1.2 GJ/m3)
During de-lithiation ~ 0.5 J (1.05 GJ/
Polarization loss: 0.75 J (~ 400 J/m?)

Potential, V vs. Li/Li"
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significant and needs to be taken into account.

Mechanical dissipation is 60% - 80% of the polarization loss. It is }




Stress-potential coupling in electrode materials

Li (Si) — Li" (elec) + e (Si)

3 i) 3
At EViMi =0 =u+zep
Li equilibrium

iy (Si) = @ (elec) + i - (S

Larche-Cahn (1978) chemical potential for a solid

solution
u=u,+ leOg(VC/Co) 3 Okk Q1,00
('*)sv -vol : : . asijkl
n= E , €, 1volumetric strain - O0; : stress tensor, /J)ijkl = 3

! ; S 5 Q
[eEo = Uploe — U ] [M = u;(Si) - u® (Si)+ kT log(ylci)‘TnUkk - QB i ka
€ 0

Mechanics and electrochemistry are coupled naturally through solution

thermodynamics




Equilibrium potential during lithiation-delithiation with stress effects

Voltage, V vs. Li/Li*
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How strong is the stress-potential coupling?

(i i)

Li

Equilibrium potential

Ignore this term

[eEO = Helec ~ M’ ] for now
/

' . ¢ Q
[ u' = g (Si)- Mg_(Sl) + leOg(hi) ‘Tnakk - Qﬁ%f’if’ka

)

Voltage, V vs. Li/Lit
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0.75;
e=16x10"9C; [, ~2 GPa
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The effect of stress is substantial in all materials that can sustain high
stresses! It should be taken into account in battery modeling.




Equilibrium potential during lithiation-delithiation with stress effects

Voltage, V vs. Li/Li*
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Measurement of Coupling between stress and anode potential
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» Measured stress — potential coupling ¥} 98-105 mV/GPa

» Agrees reasonably well with the back of the envelope calculation of 63 mV/
GPa

* First time observation of this effect — needs to be explored further

* Potentially Iimportant tactor in silicon anode modeling




Characterization of elastic modulus of lithiated silicon

Measurement of biaxial modulus with lithiation
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Electrode curls upon electrode-wetting
PHEV baseline cathode (Argonne National
Lab)
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Source: Daniel Abraham, Argonne National Lab



Stress, MPa

Stress evolution upon electrode-wetting
PHEV baseline cathode (Argonne National
Lab)

N

Cathode composition: 84% LiNi, ;Co, 45Al, 0s0,, 4% SFG-6 graphite,
4% Super P Conductive Carbon Black, 8% PVDF
Electrolyte: 1.2 M LiPF; in EC:DEC

Time, h



Stress evolution upon electrode-wetting
PHEV baseline cathode (Argonne National
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Summary

Developed a method to measure electrode stress in
situ during electrochemistry.

Demonstrated that mechanical dissipation in silicon
anodes due to plasticity is comparable to polarization
losses

Based on solution thermodynamics, we predict
coupling between stress and anode potential.
Experimentally verified this coupling.

Measured the elastic modulus of lithiated silicon as a
function of lithium concentration. Such data is very

important for modeling the cycle life of silicon anodes.

Characterized stress due to first cycle phase
transformation in silicon.

Effect of self-discharge on stress evolution is
characterized.
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