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Background and Motivation for Present Work

• Background
– Cell PTC device proven 

effective control for 
overcurrent hazards at Li-Ion 
cell and small battery level

– Proven ineffective in high-
voltage battery designs

– Fire in 2004 Memphis FedEx 
facility suspected due to PTC 
device failures in large 
capacity (66p-2s) battery 
shorted while at 50% SOC 

• Motivation
– Can NASA’s spacesuit 

battery design (16p-5s) array 
depend on cell PTC devices 
to tolerate an external 16p 
short?

– Is there a range of smart 
shorts that can be 
hazardous?
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Objectives

• Create an engineering model to 
guide the design and to verify safety 
margin of a battery using high 
specific energy COTS cells

PTCPTC

• Use the model to provide input for designing NASA 16p-5s 
18650 spacesuit battery
– Cell model must include the electrical and thermal behavior of the cell 

PTC device
– Use cell model as building block to model multicell battery behavior 

under short-circuit conditions
– Assess the range of smart short conditions that push cells close to 

the onset of thermal runaway temperature
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Utilizing NREL’s Multiphysics Battery Modeling

• Electrical Performance Modeling 
– Cells & multistring modules

• Thermal Modeling
– Cells & modules

• Thermal/Electrochemical Modeling
– Cells

• Thermal/Chemical Abuse Modeling*
– Cells and modules

*G.-H. Kim, A. Pesaran, “Analysis of heat dissipation in Li-ion cells and modules for modeling of thermal runaway,” 3rd International Symposium on Large Lithium Ion Battery Technology and Application, Long Beach, 
CA, May 2007.  Available: www.nrel.gov/vehiclesandfuels/energystorage/
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Overview
• Modeling

– Approach
– PTC device (discussed by Eric Darcy)
– Cell

• Electrical 
• Thermal (5-node)

– Module
• Electrical (multinode network)
• Thermal (multinode network)

• Validation with experiments from SRI
– 16P module with 10 mΩ external short

• Parametric study
– Resistance of external short
– Heat rejection rate to ambient

• Conclusions

PTCPTC

Photo: Symmetry Resources Inc. (SRI)
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Modeling Approach
Previous Work:
• Design module to prevent 

thermal runaway propagation

Present Work:
• Verify module design tolerant 

to external electrical short
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16P Bundle External Short Test
• Performed by Symmetry 

Resources, Inc.
• Moli ICR18650J cells
• 16 parallel
• 10 mΩ external short

Model has to capture important physics 
happening during an experiment

• PTC device behavior
– RPTC(T)
– Thermal connection with the 

cell
• Cell electrical behavior

– Current/voltage/temperature 
relationship

• Cell-to-cell heat transfer
– Conduction 

• air gaps
• electrical tabs

– radiation
• Cell-to-ambient heat transfer

– Convection to air
– Conduction through wire 

leads

Photos: SRI
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Model Development Approach

Unit Cell Model
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Integrated Thermal and Electrical Network Model of a Multicell Battery
for Safety Evaluation of Module Design with PTC Devices during External Short
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Unit Cell Model: Electrical Performance Model

Equivalent Equivalent 
Circuit ModelCircuit Model
and Relevant and Relevant 
ParametersParameters
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Unit Cell Electrical Model Agrees Well with Data

Validation of Equivalent Circuit ModelValidation of Equivalent Circuit Model

• Model results compared with constant 
current discharge data from manufacturer 
(21C)

• Model results compared with mission 
power profile data from NASA (25C 
and 65C)
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Unit Cell Model: Thermal Model

T [oC] MESHT [oC] MESHMESH

• Finite-volume method
• 41,250 computational grid

…and validated it with data from PTC device  
withstanding voltage test. (NASA/SRI)

Developed detailed cell model based 
on cell cross-cut measurements…

Detailed Cell Detailed Cell 
Thermal Thermal 
ModelModel
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Unit Cell Model: 5-nodeThermal Model Validated
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Detailed Cell Thermal ModelDetailed Cell Thermal Model
•• Large computational requirementLarge computational requirement
•• Not suitable for multicell modelingNot suitable for multicell modeling
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55--Node Cell Thermal ModelNode Cell Thermal Model
•• Low order dynamic modelLow order dynamic model
•• Suitable for multicell modelingSuitable for multicell modeling

Comparison of Detailed and 5-Node Models  
for different heat generation conditions
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Jellyroll Resistance
as a function of cell temperature

PTC Resistance
as a function of PTC temperature

Open-Circuit Voltage
as a function of cell SOC

Multicell Network Model
Electrical Network Model

The model solves voltage and current interactions 
among the components in a multicell circuit.

Data: SRI

Zjr = 6.172e-5 exp(2178/T)

Z jr = 1.04e-2 exp(651/T)
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Multicell Network Model
Thermal Network Model

Thermal Mass: Identifying thermal mass at each node
Heat Generation: PTC heat, charge transfer heat (future: abuse reaction heat) 
Heat Transfer: Quantifying heat exchange among the nodes
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Multicell Network Model
Thermal Network Model

Thermal Mass: Identifying thermal mass at each node
Heat Generation: PTC heat, charge transfer heat (future: abuse reaction heat)
Heat Transfer: Quantifying heat exchange among the nodes
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Experimental Model Validation 
10 mΩ External Short

1) t = 0 sec: Circuit closed.

2) t ≈ 12 sec: PTC devices trip.
– TPTC = 130ºC

3) t ≈ 1 hr: Steady state reached.
~  C/5 discharge

Data & Photo: SRI
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Model Validation – Current & Voltage

Peak inrush current readily predicted with knowledge of cell & short resistances.

PTC device trip time affected by
– PTC thermal mass
– PTC conductive path to jellyroll & can.

Steady-state behavior affected by jellyroll and PTC device temperature, indirectly:
– PTC conductive path to jellyroll & can
– Thermal boundary conditions to ambient.
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Model predicts correct temperature 
rise, but slightly smaller cell-to-cell 
ΔT caused by
– Model uniform T in cell-radial 

direction
– Thermocouple locations
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Model Prediction – Heat Generation

PTC devices at steady state
1.35 to 1.86 W

• Pre-trip:    Jellyroll heat generation dominates
• Post-trip:  PTC device heat generation dominates



National Renewable Energy Laboratory                            Innovation for Our Energy Future20

Is this design safe under other short conditions?
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/

Simulation Results at Various Values of Rshort

• Rshort ≤ 40 mΩ:  PTC-limited

• Rshort ≥ 50 mΩ:  SOC-limited

• Tripped PTC device serves as 
thermal regulator
[dRPTC/dT]130˚C = 3 Ω /˚C
(5 orders of magnitude > than at 25˚C)

• Large pre-trip heat rates are 
safe provided that they have
– Short duration
– Sufficient thermal mass
– Sufficient heat dissipation

Steady State Temp

Average Heat
Before and After Trip

PTC

Jellyroll

Post-trip

Pre-trip

Max Temp
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Red lines:    h = hnominal / 2
Black lines:  h = hnominal

How much heat rejection is required for safety?

• PTC device trip time 
decreases only slightly 
with less heat rejection 
from cells.

• Less rejection leads to 
hotter PTC device 
(higher resistance) and 
slower discharge of cell.

Additional simulations run with various 
values of h (convective heat transfer 
coefficient to ambient).
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PTC

Jellyroll

Post-trip

Pre-trip

How much heat rejection is required for safety?

• Less rejection causes an 
increase in jellyroll 
temperature.

• Pre-trip heat generation rate 
largely unaffected by thermal 
boundary conditions.

• Post-trip, the PTC device 
reduces heat generation rate 
as heat rejection decreases.

Red lines:    h = hnominal / 2
Black lines:  h = hnominal
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Conclusions
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to be tolerant to a wide range of external 
shorts for the 16p configuration of 
spacesuit battery as long as
– No damage due to the in-rush current 

transient occurs 
– Nominal tripping of cell PTC devices and 

steady state conditions occur 

• PTC device is an effective thermal 
regulator. Maximum cell temperature 
(final state) is very similar for a variety of 
initial and boundary conditions.

• Created & validated a new multicell math model capturing electrical and 
thermal interactions of cells with PTC devices during abuse. Suitable for

- Assessment of battery safety design margins 
- Supplement and guide verification tests

Data: SRI
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